UMD: Arevalo on planetary mass spectrometry

University of Maryland 2016 Geology Colloquium Series

Friday, November 18th 2016 at 3:00 pm
in PLS 1140

Ricardo Arevalo
NASA-GSFC

Planetary Exploration and the role of in situ mass spectrometry

Top-priority science questions drive the course of NASA (and ESA) mission selection, and are defined openly by groups of scientists, engineers and planetary advocates. As the ambitions of the community evolve, so do the technologies required to address them. For decades, mass spectrometers have served as low-risk, cost-efficient means to explore the inner and outer reaches of the solar system. Legacy analyzers have characterized a range of planetary environments, including the lunar exosphere, the surface of Mars, and the atmospheres of Venus, Mars and outer planets. However, the collection of complicated mass spectra and detection of organic compounds on Mars and Titan, coupled with ground-based measurements of organics observed in meteorites and cometary materials, has underlined the importance of molecular disambiguation in next generation instruments. In response to these demands, next generation mass spectrometers promise: compatibility with ! chemical separation techniques, such as two-step ionization methods and liquid or gas chromatography; isolation/enrichment of targeted ion signals and intentional fragmentation of precursor (or “parent”) molecules; and, intrinsically higher mass resolving powers to distinguish compounds with nearly identical mass-to-charge ratios.

Here, a review is provided on the process by which missions concepts are formulated, and the evolution of mass spectrometry as a versatile analytical tool for probing the chemical compositions of high-priority planetary environments.

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s